

Precision Tools since 1918

Schumacher has been producing high end cutting tools for more than 90 years.

In addition to high end products, our customers expect an array of flexible services in the sectors application-oriented R&D, stock management, logistics, and after-sales support. In a market dominated by international competition, however, such services can only be provided on a sustainable basis if built upon an excellent cost base.

The continuous and transparent flow of information and the transaction of all processes through clearly-defined interfaces with all partners represent some of the main prerequisites in this context. This framework has led our company to develop from a traditional tool factory into a service-based producer with an international network of R&D, production and logistics.

This development has been supported by sustainable research and development activities which Schumacher pursues with several prestigious universities both in Germany and at the international level.

Network Production

@ Schumacher

branch 2 Ecapacity (h)

Virtual Pool Production

brauch 1

Ecapacity (h

branch 3 Ecapacity (h)

The Schumacher Principle

The Schumacher principle comprises services such as:

- Development and production of high end cutting tools
- Standardization
- On-demand research and development
- Tool life tests and comparative assessments
- Technical training and seminars for your staff
- Disposition and stock management

Design for Tool Performance

In the field of R&D for high performance tools, Schumacher can draw upon an internal standardized product data base containing more than 20,000 tool types. This technological basis supports the construction of tools – such as for our 'rapid prototyping' – and facilitates the CAD variant construction.

An external network of reputable institutions supports Schumacher when it comes to high speed steels and full metal substrates, heat and surface treatments as well as hard coatings.

High Speed Cutting ®

Product line designed for hard steel tooling

Product line with newly developed hard coatings and geometries for high speed cutting (HSC / HPC)

High End Solutions

Schumacher service engineers ensure an optimum performance with a carefully-tailored tool design (substrate, geometry, hard coating), exact parameters for the use of the tools and a continuous controlling process regarding the environment in which the tool is used.

Key objectives for the work processes include:

- + Increase of cutting speeds
- + Increase of tool life
- + Reduction of tool replacement costs
- + Increase of application range in each tool group

Product line from various PM-substrates designed for high end applications

Example: PM-Line Typhoon Series

Research & Development

Management tools developed jointly by Schumacher and Aachen University serve as a backbone for an integrated processing of information in our company.

Data base-oriented product design combined with DP-based systems of production and logistics guarantee the professional character requested by sophisticated customers. This holds true both for the production of tools and for online services — such as providing data on technology and logistics according to our customer requirements.

Our management tool 'network production' introduces modern networking structures to manufactures — an advance in know-how which has enabled us to provide consultant services to many companies in the precision tool industry.

RWTH Aachen University

Successful cooperation with prestigious universities

Flexible on-demand R&D in tool technology and development of management tools for small and medium-sized enterprises (SME)

High Volume b-to-b for professionals

Schumacher holds an extensive program of tools in stock with more than 25,000 different tool types.

Tool design, labeling, and packing are provided from one source — carefully-tailored to the specific requirements of our b-to-b customers — including a stock management with a guaranteed 99% availability.

Carbide Technology

Based on the Schumacher technology data network, a partnership project with industry end users has enabled us to significantly increase cutting speeds, raise tool life and improve the thread's overall quality through the employment of newly-developed solid carbide taps as well as solid carbide forming taps.

In close cooperation with the substrate producers, our precision tools are specifically adapted to the broad variety of production techniques in engine construction.

These new solid carbide taps are meanwhile employed under various clamping conditions and both in CNC-Machines as well as in transfer streets with automatic chucking machines.

Hence, this solid carbide technology has successfully replaced previous high speed steel taps in these applications.

Product line made of solid carbide – with internal coolant supply

Market-oriented Schumacher pricing for an excellent cost base

Innovative and competitive industries require short reply times for the pricing of special tools. Schumacher applies management tools which support the most efficient use of the factors time and cost.

Moreover, our after-sales service has turned out to be a deciding factor for customer satisfaction in specialized industries. Our methods of communication have proven to be essential for Schumacher's competitive edge.

The 'Schumacher principle' for special tools:

Production logistic system with blanks available in all common versions – also at hand for the 5 Days Speed Service
Remark: For Europe countries only

5 days

Special Tools in 5 days

Products and Services

The Enterprise		1.1 - 1.9
Metric Coarse Thread	M	1 - 19
Metric Fine Thread	MF	20-31
Unified Coarse Thread ANSI B1.1	UNC	32-35
Unified Fine Thread ANSI B1.1	UNF	36-39
Whitworth Pipe Thread DIN ISO 228	PF	40-41
British Standard Tappered Pipe Thread DIN EN 10226-2, ISO 7-1	BSPT	42
American Tapered Pipe Thread ANSI B 1.20.1	NPT	43-44
Technology		7.1
Color Rings		7.2
Cutting Speeds		7.3
Chamfer Length		7.4
Surface		7.5
Tolerance		7.6
Material Groups		7.7 - 7.10

Remarks:

- 1. "SL" Sackloch is a German language which means blind holes.
 - "DL" Durchgangsloch is a German language which means through holes.
- 2. Actual thread length for M2 to M6 maybe different from the specification listed on the catalogue.

Under development Spiral Fluted Taps No Ring

JIS HSS-E/V3 RH spiral flutes 40° for universal use

Group C30A for blind holes

ArtNo.						C30A/89 S1	C30A/89 S2	C30A/2689 S1	C30A/2689 S
Technology	(i) Page 7.1					spiral flutes	spiral flutes	spiral flutes	spiral flutes
Chamfer Length	1 Page 7.4						C/2	2-3 x P	
Surface	(i) Page 7.5							steam oxided	steam oxided
Tolerance	(i) Page 7.8					S1	S2	S1	S2
Material Groups	(i) Page 7.7						univer	rsal use	
Ødı	Pmm	Lı	L2 (dz 🗆	Î				
M 2	0,4	40	9,5 3	3 2,5	1,6				
M 2,5	0,45	44	9,5	3 2,5	2,05				
M3	0,5	46	9 4	3,2	2,5		•		•
M 4	0,7	52	11	5 4	3,3		•		•
M 5	0,8	60	13	5,5 4,5	4,2		•		•
M 6	1	62	15 (4,5	5		•		•
M 8	1,25	70	22 (5,2 5	6,80				
M 10	1,5	75	24	7 5,5	8,5				
M 12	1,75	82	29 {	3,5 6,5	10,2				
		fi.							

Under development Spiral Pointed Taps No Ring

JIS HSS-E/V3 for universal use

Group C11A for through holes

ArtNo.							C11A/89 S1	C11A/89 S2	C11A/2689 S1	C11A/2689 S
Technology	(i) Page 7.1						spiral point	spiral point	spiral point	spiral point
Chamfer Length	1 Page 7.4							B/	3,5-5 x P	
Surface	(i) Page 7.5								steam oxided	steam oxided
Tolerance	1 Page 7.6						S1	S2	S1	S2
Material Groups	(1) Page 7.7							univ	ersal use	
Ødı	Pmm	Lı	L2	dz 🗆	Û					
M 2	0,4	40	9,5	3 2,5	1,	6				
M 2,5	0,45	44	9,5	3 2,5	2,	05				
M 3	0,5	46	9	4 3,2	2,	5		•		•
M 4	0,7	52	11 !	5 4	3,	3		•		•
M 5	0,8	60	13	5,5 4,5	4,	2		•		•
M 6	1	62	15 (3 4,5	5			•		•
M 8	1,25	70	22	5,2 5	6,	80				
M 10	1,5	75	24	7 5,5	8,	5				
M 12	1,75	82	29	3,5 6,5	10,	2				
		h/								

SL (previous symbol SP) Spiral Fluted Taps Black Ring

JIS HSS-E/V3 RH spiral flutes 40° for universal use Recommended using CNC machine

Group C33A for blind holes

ArtNo.						C33A/89 S1	C33A/89 S2	C33A/89 S3	C33A/89 S4
Technology	(1) Page 7.1					Black Ring	Black Ring	Black Ring	Black Ring
roomiology	•					spiral flutes	spiral flutes	spiral flutes	spiral flutes
Chamfer Length	1 Page 7.4						C / 2-	-3 x P	
Surface	(i) Page 7.5								
Tolerance	1 Page 7.6					S1	S2	S3	S4
Material Groups	(i) Page 7.7						univer	sal use	
Ød ₁	Pmm	Li l	2 d 2		Î				
M 1	0,25	30 7	3	2,5	0,75	•			
M 1,2	0,25	32 7	3	2,5	0,95	•			
M 1,4	0,3	34 9,	5 3	2,5	1,1	•			
M 1,6	0,35	36 9,	5 3	2,5	1,25	•			
M 1,7	0,35	36 9,	5 3	2,5	1,35	•			
M 2	0,4	40 9,	5 3	2,5	1,6	•	•	•	•
M 2,2	0,45	42 9,	5 3	2,5	1,75				
M 2,3	0,4	42 9,	5 3	2,5	1,9				
M 2,5	0,45	44 9,	5 3	2,5	2,05	•	•	•	•
M 2,6	0,45	44 9,	5 3	2,5	2,15	•	•		
M 3	0,5	46 9	4	3,2	2,5		•	•	•
M 3,5	0,6	48 13	3 4	3,2	2,9		•		
M 4	0,7	52 1	1 5	4	3,3		•	•	•
M 4,5	0,75	55 13	3 5	4	3,7				
M 5	8,0	60 13	3 5,5	4,5	4,2		•	•	•
M 6	1	62 15	5 6	4,5	5		•	•	•
M 7	1	65 19	9 6,2	5	6		•		
M 8	1,25	70 22	2 6,2	5	6,80		•		•
M 9	1,25	72 22	2 7	5,5	7,8				
M 10	1,5	75 24	4 7	5,5	8,5		•		•
M 11	1,5	80 25	5 8	6	9,5				
M 12	1,75	82 29	9 8,5	6,5	10,2		•		
M 14	2	88 30	0 10,5	8	12		•		

SL (previous symbol SP) Spiral Fluted Taps Black Ring

JIS HSS-E/V3 RH spiral flutes 40° for universal use Recommended using CNC machine

Group C33A for blind holes

ArtNo.		C33A/89 S1	C33A/89 S2	C33A/89 S3	C33A/89 S4
Technology	(1) Page 7.1	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4		C/2	2-3 x P	
Surface	Page 7.5				
Tolerance	(1) Page 7.8	S1	S2	S3	S4
Material Groups	1 Page 7.7		univer	rsal use	
Ødı	Pmm L1 L2 d2	n 8			

Material Groups	(1) Page 7.7	universal use	
Ødı	Pmm	Lı Lı dı 🗆 🖁	
M 16	2	95 32 12,5 10 14	
M 18	2,5	100 37 14 11 15,5	
M 20	2,5	105 37 15 12 17,5	
M 22	2,5	115 38 17 13 19,5	
M 24	3	120 45 19 15 21	
M 27	3	130 45 20 15 24	
M 30	3,5	135 48 23 17 26,5	
M 33	3,5	145 51 25 19 29,5	
M 36	4	155 57 28 21 32	

JIS HSS-E/V3 RH spiral flutes 40° for universal use Recommended using CNC machine Recommended using oily cutting fluid for steam oxide products

Group C33A for blind holes

Art.-No.

M 14

2xd,

C33A/2689 S1

C33A/2689 S2

C33A/2689 S3

C33A/2689 S4

Technology	(i) Page 7.1			Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4				C/2	2-3 x P	
Surface	(i) Page 7.5			steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	(i) Page 7.6			S1	S2	S3	S4
Material Groups	(i) Page 7.7				univer	rsal use	
Ødı	P _{mm}	Lı Lı dı	2 🗆 🖠				
M 1	0,25	30 7 3	2,5 0	75			
M 1,2	0,25	32 7 3	2,5 0	95			
M 1,4	0,3	34 9,5 3	2,5 1	1			
M 1,6	0,35	36 9,5 3	2,5 1	25			
M 1,7	0,35	36 9,5 3	2,5 1	35			
M 2	0,4	40 9,5 3	2,5 1	6			
M 2,2	0,45	42 9,5 3	2,5 1	75			
M 2,3	0,4	42 9,5 3	2,5 1	9			
M 2,5	0,45	44 9,5 3	2,5 2	05			
M 2,6	0,45	44 9,5 3	2,5 2	15			
M 3	0,5	46 9 4	3,2 2	5	•		
M 3,5	0,6	48 13 4	3,2 2	9			
M 4	0,7	52 11 5	4 3	3	•		
M 4,5	0,75	55 13 5	4 3	7			
M 5	8,0	60 13 5	,5 4,5 4	2	•	•	
M 6	1	62 15 6	4,5 5		•		
M 7	1	65 19 6	,2 5 6		•		
M 8	1,25	70 22 6	,2 5 6,	8	•		
M 9	1,25	72 22 7	5,5 7	8			
M 10	1,5	75 24 7	5,5 8	5	•		
M 11	1,5	80 25 8		5			
M 12	1,75	82 29 8	,5 6,5 10	2	•		

88 30 10,5 8

JIS
HSS-E/V3
RH spiral flutes 40°
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C33A for blind holes

ArtNo.		C33A/2689 S1	C33A/2689 S2	C33A/2689 S3	C33A/2689 S
Technology	(1) Page 7.1	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4		C/2	-3 x P	
Surface	(i) Page 7.5	steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	Page 7.8	S1	S2	S3	S4
Material Groups	(i) Page 7.7		univer	sal use	

Material Groups	(i) Page 7.7	universal use	
Ødı	P _{mm}	L1 L2 d2 🗆 🕯	
M 16	2	95 32 12,5 10 14	
M 18	2,5	100 37 14 11 15,5	
M 20	2,5	105 37 15 12 17,5	
M 22	2,5	115 38 17 13 19,5	
M 24	3	120 45 19 15 21	
M 27	3	130 45 20 15 24	
M 30	3,5	135 48 23 17 26,5	
M 33	3,5	145 51 25 19 29,5	
M 36	4	155 57 28 21 32	

SL2 / SL2-OX (previous symbol SP2 / SP2-OX) Spiral Fluted Taps (Short Thread Type) Black Ring

JIS
HSS-E/V3
RH spiral flutes 40°
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C33A for deep blind holes

ArtNo.							C33A/3289 S1	C33A/3289 S2	C33A/263289 S1	C33A/263289 S
Technology	1 Page 7.1						Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4							C/2	2-3 x P	
Surface	(i) Page 7.5								steam oxided	steam oxided
Tolerance	(1) Page 7.6						S1	S2	S1	S2
Material Groups	(i) Page 7.7							unive	rsal use	
Ødı	Pmm	L	L2	d ₂		Î				
M 2	0,4	40	8	3	2,5	1,6				
M 2,5	0,45	44	9	3	2,5	2,05				
M3	0,5	46	6	4	3,2	2,5		•		•
M 4	0,7	52	7	5	4	3,3		•		•
M 5	0,8	60	8	5,5	4,5	4,2		•		•
M 6	1	62	10	6	4,5	5		•		•
M 8	1,25	70	13	6,2	5	6,80				
M 10	1,5	75	15	7	5,5	8,5				
M 12	1,75	82	18	8,5	6,5	10,2				
						4				

LS-SL (previous symbol LS-SP) Spiral Fluted Taps (Extended Shank) Black Ring

JIS HSS-E/V3 RH spiral flutes 40° for universal use Recommended using CNC machine

Group C33A for blind holes

ArtNo.							C33A/4389 S1	C33A/4389 S2	
Technology	1 Page 7.1						Black Ring spiral flutes	Black Ring spiral flutes	
Chamfer Length	1 Page 7.4						C/2	-3 x P	
Surface	(i) Page 7.5								
Tolerance	(i) Page 7.6						S1	S2	
Material Groups	(i) Page 7.7						univer	sal use	
Ødı	Pmm	Lı	L2	d 2 [Î			
M 3	0,5	100	9	4	3,2	2,5		•	
M 4	0,7	100	11	5	4	3,3		•	
M 5	0,8	100	13	5,5	4,5	4,2		•	
M 6	1	100	15	6	4,5	5		•	
M 8	1,25	100	22	6,2	5	6,8		•	
M 10	1,5	100	24	7	5,5	8,5		•	
M 12	1,75	150	29	8,5	6,5	10,2		•	
		+							

JIS HSS-E/V3 for universal use Recommended using CNC machine

Group C19A for through holes

2xd

ArtNo.			C19A/89 S1	C19A/89 S2	C19A/89 S3	C19A/89 S4
Technology	(1) Page 7.1		Black Ring	Black Ring	Black Ring	Black Ring
			spiral point	spiral point	spiral point	spiral point
Chamfer Length	1 Page 7.4			B/3,5	5-5 x P	
Surface	(i) Page 7.5					
Tolerance	(i) Page 7.8		S1	S2	S3	S4
Material Groups	(i) Page 7.7			univer	sal use	
Ødı	P _{mm}	L1 L2 d2 🗆 🧂				
M 1	0,25	30 7 3 2,5 0,75	•			
M 1,2	0,25	32 7 3 2,5 0,95	•			
M 1,4	0,3	34 9,5 3 2,5 1,1	•			
M 1,6	0,35	36 9,5 3 2,5 1,25	•			
M 1,7	0,35	36 9,5 3 2,5 1,35	•			
M 2	0,4	40 9,5 3 2,5 1,6		•		•
M 2,2	0,45	42 9,5 3 2,5 1,75				
M 2,3	0,4	42 9,5 3 2,5 1,9				
M 2,5	0,45	44 9,5 3 2,5 2,05		•		
M 2,6	0,45	44 9,5 3 2,5 2,15		•		
M 3	0,5	46 9 4 3,2 2,5		•		•
M 3,5	0,6	48 13 4 3,2 2,9		•		
M 4	0,7	52 11 5 4 3,3		•		•
M 4,5	0,75	55 13 5 4 3,7				
M 5	0,8	60 13 5,5 4,5 4,2		•		•
M 6	1	62 15 6 4,5 5		•	•	•
M 7	1	65 19 6,2 5 6				
M 8	1,25	70 22 6,2 5 6,8			•	
M 9	1,25	72 22 7 5,5 7,8				
M 10	1,5	75 24 7 5,5 8,5			•	
M 11	1,5	80 25 8 6 9,5				
M 12	1,75	82 29 8,5 6,5 10,2				•
M 14	2	88 30 10,5 8 12				•

JIS HSS-E/V3 for universal use Recommended using CNC machine

Group C19A for through holes

ArtNo.		C19A/89 S1	C19A/89 S2	C19A/89 S3	C19A/89 S4
Technology	(i) Page 7.1	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	Page 7.4		B/3,	5-5 x P	
Surface	(i) Page 7.5				
Tolerance	1 Page 7.6	S1	S2	S3	S4
Material Groups	(i) Page 7.7		univer	sal use	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	and the contract of the contra	
Ødı	Pmm	Fi Fi qs 🗆 🖁	
M 16	2	95 32 12,5 10 14	•
M 18	2,5	100 37 14 11 15,5	•
M 20	2,5	105 37 15 12 17,5	•
M 22	2,5	115 38 17 13 19,5	
M 24	3	120 45 19 15 21	•
M 27	3	130 45 20 15 24	
M 30	3,5	135 48 23 17 26,5	
M 33	3,5	145 51 25 19 29,5	
M 36	4	155 57 28 21 32	

JIS
HSS-E/V3
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C19A for through holes

ArtNo.			C19A/2689 S1	C19A/2689 S2	C19A/2689 S3	C19A/2689 S4
Technology	(1) Page 7.1		Black Ring	Black Ring	Black Ring	Black Ring
reciliology	Tage 7.1		spiral point	spiral point	spiral point	spiral point
Chamfer Length	1 Page 7.4			B/3,	5-5 x P	
Surface	(i) Page 7.5		steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	(i) Page 7.6		S1	S2	S3	S4
Material Groups	(i) Page 7.7		,	univer	sal use	
Ød ₁	P _{mm}	L1 L2 d 2 🗆 🔋				
M 1	0,25	30 7 3 2,5 0,75				
M 1,2	0,25	32 7 3 2,5 0,95				
M 1,4	0,3	34 9,5 3 2,5 1,1				
M 1,6	0,35	36 9,5 3 2,5 1,25				
M 1,7	0,35	36 9,5 3 2,5 1,35				
M 2	0,4	40 9,5 3 2,5 1,6		•		
M 2,2	0,45	42 9,5 3 2,5 1,75				
M 2,3	0,4	42 9,5 3 2,5 1,9				
M 2,5	0,45	44 9,5 3 2,5 2,05		•		
M 2,6	0,45	44 9,5 3 2,5 2,15				
M 3	0,5	46 9 4 3,2 2,5		•	•	•
M 3,5	0,6	48 13 4 3,2 2,9				
M 4	0,7	52 11 5 4 3,3		•		
M 4,5	0,75	55 13 5 4 3,7				
M 5	8,0	60 13 5,5 4,5 4,2		•		
M 6	1	62 15 6 4,5 5		•		
M 7	1	65 19 6,2 5 6				
M 8	1,25	70 22 6,2 5 6,8			•	
M 9	1,25	72 22 7 5,5 7,8				
M 10	1,5	75 24 7 5,5 8,5			•	
M 11	1,5	80 25 8 6 9,5				
M 12	1,75	82 29 8,5 6,5 10,2				•
M 14	2	88 30 10,5 8 12				•

JIS
HSS-E/V3
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C19A for through holes

2xd₁

ArtNo.		C19A/2689 S1	C19A/2689 S2	C19A/2689 S3	C19A/2689 S
Technology	(1) Page 7.1	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	1 Page 7.4		B/3,	5-5 x P	
Surface	Page 7.5	steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	1 Page 7.6	S1	S2	S3	S4
Material Groups	(i) Page 7.7		univer	sal use	

Ød ₁	Pmm	Lı Lı dı 🗆 🧂		
M 16	2	95 32 12,5 10 14	•	
M 18	2,5	100 37 14 11 15,5		
M 20	2,5	105 37 15 12 17,5	•	
M 22	2,5	115 38 17 13 19,5		
M 24	3	120 45 19 15 21		
M 27	3	130 45 20 15 24		
M 30	3,5	135 48 23 17 26,5		
M 33	3,5	145 51 25 19 29,5		
M 36	4	155 57 28 21 32		

JIS HSS-E/V3 for universal use

Group COOA for blind and through holes

ArtNo.		C00A/89 S1	C00A/89 S2	C00A/89 S3	C00A/89 S
Technology	(i) Page 7.1	straight flutes	straight flutes	straight flutes	straight flute
Chamfer Length	Page 7.4		C/2	-3 x P	
Surface	(i) Page 7.5				
Tolerance	(i) Page 7.8	S1	S2	S3	S4
Material Groups	(i) Page 7.7		univer	sal use	

iviaterial dioups	Tage /./	universal use
Ød ₁	Pmm	L1 L2 C2 🗆 🖁
M 1,2	0,25	32 5,5 3 2,5 0,95
M 1,4	0,3	34 7 3 2,5 1,1
M 1,6	0,35	36 8 3 2,5 1,25
M 1,7	0,35	36 8 3 2,5 1,35
M 2	0,4	40 8 3 2,5 1,6
M 2,5	0,45	44 9,5 3 2,5 2,05
M 2,6	0,45	44 9,5 3 2,5 2,15
M 3	0,5	46 9 4 3,2 2,5
M 3,5	0,6	48 13 4 3,2 2,9
M 4	0,7	52 11 5 4 3,3
M 5	0,8	60 13 5,5 4,5 4,2
M 6	1	62 15 6 4,5 5,0
M 8	1,25	70 22 6,2 5 6,8
M 10	1,5	75 24 7 5,5 8,5
M 12	1,75	82 29 8,5 6,5 10,2
M 14	2	88 30 10,5 8 12,0
M 16	2	95 32 12,5 10 14,0
M 20	2,5	105 37 15 12 17,5
M 24	3	120 45 19 15 21,0

VA-SL (previous symbol VA-SP) Spiral Fluted Taps Blue Ring

JIS
HSS-E/V3
RH spiral flutes 40°
for stainless steel
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C35A for blind holes

ArtNo.			C35A/2689 S1	C35A/2689 S2	C35A/2689 S3	C35A/2689 S4
Technology	(1) Page 7.1		Blue Ring spiral flutes	Blue Ring spiral flutes	Blue Ring spiral flutes	Blue Ring spiral flutes
Chamfer Length	1 Page 7.4			C/2	-3 x P	
Surface	(i) Page 7.5		steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	1 Page 7.8		S1	S2	S3	S4
Material Groups	(i) Page 7.7			stainle	ss steel	
Ødı	Pmm	Lı Lz dz 🗆 🧯				
M 2	0,4	40 9,5 3 2,5 1,6		•		
M 2,5	0,45	44 9,5 3 2,5 2,05		•		
M 2,6	0,45	44 9,5 3 2,5 2,15				
M 3	0,5	46 9 4 3,2 2,5			•	
M 3,5	0,6	48 13 4 3,2 2,9				
M 4	0,7	52 11 5 4 3,3			•	
M 5	0,8	60 13 5,5 4,5 4,2			•	
M 6	1	62 15 6 4,5 5			•	
M 8	1,25	70 22 6,2 5 6,8			•	
M 10	1,5	75 24 7 5,5 8,5			•	
M 12	1,75	82 29 8,5 6,5 10,2			•	
M 14	2	88 30 10,5 8 12				
M 16	2	95 32 12,5 10 14				
M 18	2,5	100 37 14 11 15,5				
M 20	2,5	105 37 15 12 17,5				

VA-DL (previous symbol VA-PO) Spiral Pointed Taps Blue Ring

JIS
HSS-E/V3
for stainless steel
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C12A for through holes

ArtNo.		C12A/2689 S1	C12A/2689 S2	C12A/2689 S3	C12A/2689 S4
Technology	(1) Page 7.1	Blue Ring spiral point	Blue Ring spiral point	Blue Ring spiral point	Blue Ring spiral point
Chamfer Length	Page 7.4		B/3,	5-5 x P	
Surface	Page 7.5	steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	1 Page 7.8	S1	S2	S3	S4
Material Groups	(1) Page 7.7		stainle	ss steel	

Material Gro	ups 1.7	95	stainless steel
Ødı	P _{mm}	בו בי dz 🗆 🧂	
M 2	0,4	40 9,5 3 2,5 1,6	
M 2,5	0,45	44 9,5 3 2,5 2,05	
M 2,6	0,45	44 9,5 3 2,5 2,15	
M 3	0,5	46 9 4 3,2 2,5	•
M 3,5	0,6	48 13 4 3,2 2,9	
M 4	0,7	52 11 5 4 3,3	•
M 5	0,8	60 13 5,5 4,5 4,2	•
M 6	1	62 15 6 4,5 5	•
M 8	1,25	70 22 6,2 5 6,8	•
M 10	1,5	75 24 7 5,5 8,5	
M 12	1,75	82 29 8,5 6,5 10,2	
M 14	2	88 30 10,5 8 12	
M 16	2	95 32 12,5 10 14	
M 18	2,5	100 37 14 11 15,5	
M 20	2,5	105 37 15 12 17,5	

HD-SL (previous symbol HD-SP) Spiral Fluted Taps Red Ring

JIS HSS-E/V3 RH spiral flutes 40° for HRC35 ~ 42 steel Recommended using CNC machine

Group C38A for blind holes

ArtNo.		C38A/89 S1	C38A/89 S2	C38A/89 S3	C38A/89 S
Technology	(i) Page 7.1	Red Ring spiral flutes	Red Ring spiral flutes	Red Ring spiral flutes	Red Ring spiral flutes
Chamfer Length	1 Page 7.4		C/2	-3 x P	
Surface	(i) Page 7.5				
Tolerance	Page 7.6	S1	S2	S3	S4
Material Groups	Page 7.7		HRC35 ~	42 steel	

Ødt Pmm L1 L2 d2 I M2 0,4 40 9,5 3 2,5 1,6 M2,5 0,45 44 9,5 3 2,5 2,05 M3 0,5 46 9 4 3,2 2,5 M4 0,7 52 11 5 4 3,3 M5 0,8 60 13 5,5 4,5 4,2 M6 1 62 15 6 4,5 5 M8 1,25 70 22 6,2 5 6,8 M10 1,5 75 24 7 5,5 8,5 M12 1,75 82 29 8,5 6,5 10,2
M 2,5 0,45 44 9,5 3 2,5 2,05 M 3 0,5 46 9 4 3,2 2,5 ■ M 4 0,7 52 11 5 4 3,3 ■ M 5 0,8 60 13 5,5 4,5 4,2 ■ M 6 1 62 15 6 4,5 5 ■ ■ M 8 1,25 70 22 6,2 5 6,8 ■ ■ M 10 1,5 75 24 7 5,5 8,5 ■ ■
M3 0,5 46 9 4 3,2 2,5 M4 0,7 52 11 5 4 3,3 M5 0,8 60 13 5,5 4,5 4,2 M6 1 62 15 6 4,5 5 M8 1,25 70 22 6,2 5 6,8 M10 1,5 75 24 7 5,5 8,5
M4 0,7 52 11 5 4 3,3 M5 0,8 60 13 5,5 4,5 4,2 M6 1 62 15 6 4,5 5 M8 1,25 70 22 6,2 5 6,8 M10 1,5 75 24 7 5,5 8,5
M 5 0,8 60 13 5,5 4,5 4,2 M 6 1 62 15 6 4,5 5 M 8 1,25 70 22 6,2 5 6,8 M 10 1,5 75 24 7 5,5 8,5
M6 1 62 15 6 4,5 5 M8 1,25 70 22 6,2 5 6,8 M10 1,5 75 24 7 5,5 8,5
M 8 1,25 70 22 6,2 5 6,8 M 10 1,5 75 24 7 5,5 8,5
M 10 1,5 75 24 7 5,5 8,5
The state of the s
M 12 1,75 82 29 8,5 6,5 10,2

JIS HSS-E/V3 for HRC35 ~ 42 steel Recommended using CNC machine

Group C17A for through holes

Technology	(i) Page 7.1	Red Ring	Red Ring	Red Ring	Red Ring
37		spiral point	spiral point	spiral point	spiral point
Chamfer Length	Page 7.4		B/3,	5-5 x P	
Surface	Page 7.5				
Tolerance	1 Page 7.8	S1	S2	S3	S4
Material Groups	(i) Page 7.7		HRC35 ~	42 steel	

	0						1111000 42 00001	
Ødı	Pmm	Lı	L2	d ₂		Î		
M 2	0,4	40	9,5	3	2,5	1,6		
M 2,5	0,45	44	9,5	3	2,5	2,05		
M 3	0,5	46	9	4	3,2	2,5	•	
M 4	0,7	52	11	5	4	3,3	•	
M 5	0,8	60	13	5,5	4,5	4,2	•	
M 6	1	62	15	6	4,5	5	•	
M 8	1,25	70	22	6,2	5	6,8		•
M 10	1,5	75	24	7	5,5	8,5		
M 12	1,75	82	29	8,5	6,5	10,2		
						1		

HD-SL-PM (Under development) Spiral Fluted Taps (High Performance) Red Ring - TYPHOON

JIS HSS-E/PM RH spiral flutes 45° for high strength steel Recommended using CNC machine

Group C34A for blind holes

Ødı	l Pmm	Lı Lı	d₂ □	Î				
Material Groups	1 Page 7.7	1				high strength steel / c	hemical resistant steel	
Tolerance	(1) Page 7.8				S1	S2	S3	S4
Surface	(i) Page 7.5				TiCN	TiCN	TiCN	TiCN
Chamfer Length	1 Page 7.4					C/2	-3 x P	
Technology	1 Page 7.1				Red Ring spiral flutes	Red Ring spiral flutes	Red Ring spiral flutes	Red Ring spiral flutes
ArtNo.					C34A/4889 S1	C34A/4889 S2	C34A/4889 S3	C34A/4889 S

Material Groups	1 Page 7.7						high strength steel / chemical resistant steel
Ødı	P _{mm}	L	L2	d ₂		Û	
M 2	0,4	40	9,5	3	2,5	1,6	
M 2,5	0,45	44	9,5	3	2,5	2,05	
M 3	0,5	46	9	4	3,2	2,5	•
M 4	0,7	52	11	5	4	3,3	•
M 5	0,8	60	13	5,5	4,5	4,2	•
M 6	1	62	15	6	4,5	5	•
M 8	1,25	70	22	6,2	5	6,8	•
M 10	1,5	75	24	7	5,5	8,5	
M 12	1,75	82	29	8,5	6,5	10,2	

JIS HSS-E/PM for high strength steel Recommended using CNC machine

Group C13A for through holes

ArtNo.		C13A/4889 S1	C13A/4889 S2	C13A/4889 S3	C13A/4889 S4
Technology	(i) Page 7.1	Red Ring spiral point	Red Ring spiral point	Red Ring spiral point	Red Ring spiral point
Chamfer Length	1 Page 7.4		B/3,5	5-5 x P	
Surface	(i) Page 7.5	TiCN	TiCN	TiCN	TiCN
Tolerance	(i) Page 7.6	S1	S2	S3	S4
Material Groups	(i) Page 7.7		high strength steel / c	hemical resistant steel	

Material Groups	1 Page 7.7	high strength steel / chemical resistant steel	
Ødı	P _{mm}	L1 L2 d2 🗆 🕯	
M 2	0,4	40 9,5 3 2,5 1,6	
M 2,5	0,45	44 9,5 3 2,5 2,05	
M 3	0,5	46 9 4 3,2 2,5	
M 4	0,7	52 11 5 4 3,3	
M 5	0,8	60 13 5,5 4,5 4,2	
M 6	1	62 15 6 4,5 5	
M 8	1,25	70 22 6,2 5 6,8	
M 10	1,5	75 24 7 5,5 8,5	
M 12	1,75	82 29 8,5 6,5 10,2	

JIS HSS-E/V3 RH spiral flutes 40° for universal use Recommended using CNC machine

ArtNo.						C33A/89 S1	C33A/89 S2	C33A/89 S3	C33A/89 S4
Technology	1 Page 7.1					Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4						C/2	-3 x P	
Surface	(i) Page 7.5								
Tolerance	(i) Page 7.6					S1	S2	S3	S4
Material Groups	(i) Page 7.7						univer	sal use	
Ødı	P _{mm}	Lı	2 d 2		Î				
M 3	0,35	46 9	4	3,2	2,65				
M 3,5	0,35	48 1	3 4	3,2	3,15				
M 4	0,5	52 1	1 5	4	3,5				
M 4,5	0,5	55 1	3 5	4	4				
M 5	0,5	60 1	3 5,5	4,5	4,5		•		
M 6	0,5	62 1	5 6	4,5	5,5				
M 6	0,75	62 1	5 6	4,5	5,25		•		
M 7	0,75	65 1	9 6,2	2 5	6,25		•		
M 8	0,75	70 2	2 6,2	2 5	7,2		•		
M 8	1	70 2	2 6,2	2 5	7		•		
M 9	0,75	72 2	2 7	5,5	8,25				
M 9	1	72 2	2 7	5,5	8				
M 10	0,75	75 2	4 7	5,5	9,25				
M 10	1	75 2	4 7	5,5	9		•		
M 10	1,25	75 2	4 7	5,5	8,75		•		
M 11	0,75	80 2	5 8	6	10,25				
M 11	1	80 2	5 8	6	10				
M 12	1	82 2	9 8,5	6,5	11		•		
M 12	1,25	82 2	9 8,5	6,5	10,75		•		
M 12	1,5	82 2	9 8,5	6,5	10,5		•		
M 14	1	88 3	0 10	,5 8	13				
M 14	1,25	88 3	0 10	,5 8	12,75				
M 14	1,5	88 3	0 10	,5 8	12,5		•		

SL (previous symbol SP) Spiral Fluted Taps Black Ring

JIS HSS-E/V3 RH spiral flutes 40° for universal use Recommended using CNC machine

Group C33A for blind holes

ArtNo.		C33A/89 S1	C33A/89 S2	C33A/89 S3	C33A/89 S
Technology	(i) Page 7.1	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	Page 7.4		C/2	-3 x P	
Surface	(i) Page 7.5				
Tolerance	(i) Page 7.6	S1	S2	S3	S4
Material Groups	(1) Page 7.7		univer	sal use	

Waterial Groups	Tage /1/	universal use
Ødı	Pmm	L1 L2 C2 🗆 🖥
M 15	1	90 30 10,5 8 14
M 15	1,5	90 30 10,5 8 13,5
M 16	1	95 32 12,5 10 15
M 16	1,5	95 32 12,5 10 14,5
M 18	1	100 37 14 11 17
M 18	1,5	100 37 14 11 16,5
M 18	2	100 37 14 11 16
M 20	1	105 37 15 12 19
M 20	1,5	105 37 15 12 18,5
M 20	2	105 37 15 12 18
M 22	1	115 38 17 13 21,0
M 22	1,5	115 38 17 13 20,5
M 22	2	115 38 17 13 20
M 24	1	120 45 19 15 23
M 24	1,5	120 45 19 15 22,5
M 24	2	120 45 19 15 22
M 25	1,5	125 45 19 15 23,5
M 25	2	125 45 19 15 23
M 26	1	125 45 20 15 25
M 26	1,5	125 45 20 15 24,5
M 26	2	125 45 20 15 24
M 27	1,5	130 45 20 15 25,5
M 27	2	130 45 20 15 25

ArtNo.						C33A/89 S1	C33A/89 S2	C33A/89 S3	C33A/89
Technology	1 Page 7.1					Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flute
Chamfer Length	(1) Page 7.4						C/2-	3 x P	
Surface	(i) Page 7.5								
Tolerance	(i) Page 7.6					S1	S2	S3	S4
Material Groups	(1) Page 7.7						univers	sal use	
Ødı	Pmm	Lı	L2 d2		Î				
M 28	1,5	130	45 21	17	26,5				
M 28	2	130	45 21	17	26				
M 30	1	135	48 23	17	29				
M 30	1,5	135	48 23	17	28,5				
M 30	2	135	48 23	17	28				
M 30	3	135	48 23	17	27				
M 33	1,5	145	45 25	19	31,5				
M 33	2	145	45 25	19	31				
M 33	3	145	51 25	19	30				
M 36	1,5	155	45 28	21	34,5				
M 36	2	155	45 28	21	34				
M 36	3	155	57 28	21	33				

JIS
HSS-E/V3
RH spiral flutes 40°
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C33A for blind holes

M8

M8

M9

M 9

M 10 M 10

M 10

M 11

M 12

M 12

M 12

M 14

M 14

M 14

2xd,

0,75

0,75

0,75

1,25

0,75

1,25

1,5

1,25

1,5

70 22

70 22 72 22

72 22

75 24

75 24

80 25

80 25

82 29

82 29

8 6

8,5 6,5

8,5 6,5

82 29 8,5 6,5

88 30 10,5 8

88 30 10,5 8

88 30 10,5 8

6,2 5

5,5

5,5 8

5,5

5,5

7,2

8,25

9,25

8,75

10,25

10,75

10,5

12,75

10

						Î				
ArtNo.							C33A/2689 S1	C33A/2689 S2	C33A/2689 S3	C33A/2689 S4
Technology	(i) Page 7.1						Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4							C/2	-3 x P	
Surface	(i) Page 7.5						steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	(1) Page 7.6						S1	S2	S3	S4
Material Groups	(i) Page 7.7							univer	sal use	
Ødı	Pmm	Lı	L2	d₂		Î				
M 3	0,35	46	9	4	3,2	2,65				
M 3,5	0,35	48	13	4	3,2	3,15				
M 4	0,5	52	11	5	4	3,5				
M 4,5	0,5	55	13	5	4	4				
M 5	0,5	60	13	5,5	4,5	4,5				
M 6	0,5	62	15	6	4,5	5,5				
		62	15	6	4,5	5,25				
M 6	0,75	UZ	10	U	1,0	0,20				

JIS
HSS-E/V3
RH spiral flutes 40°
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C33A for blind holes

M 25

M 25

M 26

M 26

M 26

M 27

M 27

1,5

1,5

1,5

125 45 19

125 45 19 125 45 20

125 45 20

125 45 20 130 45 20

130 45 20

23,5

24,5

15 25

ArtNo.				C33A/2689 S1	C33A/2689 S2	C33A/2689 S3	C33A/2689 S4
Technology	(i) Page 7.1			Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4				C/2	2-3 x P	
Surface	(i) Page 7.5			steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	(i) Page 7.6			S1	S2	S3	S4
Material Groups	(i) Page 7.7				univer	rsal use	
Ød ₁	P _{mm}	L1 L2 d 2 [□ (
M 15	1	90 30 10,5	8 14				
M 15	1,5	90 30 10,5	8 13,5				
M 16	1	95 32 12,5	10 15				
M 16	1,5	95 32 12,5	10 14,5				
M 18	1	100 37 14	11 17				
M 18	1,5	100 37 14	11 16,5				
M 18	2	100 37 14	11 16				
M 20	1	105 37 15	12 19				
M 20	1,5	105 37 15	12 18,5				
M 20	2	105 37 15	12 18				
M 22	1	115 38 17	13 21,0				
M 22	1,5	115 38 17	13 20,5				
M 22	2	115 38 17	13 20				
M 24	1	120 45 19	15 23				
M 24	1,5	120 45 19	15 22,5				
M 24	2	120 45 19	15 22				

JIS
HSS-E/V3
RH spiral flutes 40°
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C33A for blind holes

Ød ₁	Pmm	Lı Lı	d₂ □	Î				
Material Groups	(i) Page 7.7	universal use						
Tolerance	1 Page 7.8				S1	S2	S3	S4
Surface	(i) Page 7.5				steam oxided	steam oxided	steam oxided	steam oxided
Chamfer Length	1 Page 7.4	C / 2-3 x P						
Technology	(i) Page 7.1				Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
ArtNo.					C33A/2689 S1	C33A/2689 S2	C33A/2689 S3	C33A/2689 S4

iviatoriai dioups	1 000 1.1	universal use
Ødı	P _{mm}	Li Le de 🗆 🖡
M 28	1,5	130 45 21 17 26,5
M 28	2	130 45 21 17 26
M 30	1	135 48 23 17 29
M 30	1,5	135 48 23 17 28,5
M 30	2	135 48 23 17 28
M 30	3	135 48 23 17 27
M 33	1,5	145 45 25 19 31,5
M 33	2	145 45 25 19 31
M 33	3	145 51 25 19 30
M 36	1,5	155 45 28 21 34,5
M 36	2	155 45 28 21 34
M 36	3	155 57 28 21 33

2xd,

→ d1 **←**

82 29 8,5 6,5

82 29 8,5 6,5

88 30 10,5 8

88 30 10,5 8

88 30 10,5 8

M 12

M 12

M 14

M 14

M 14

1,25

1,5

1,25

1,5

10,75

12,75

		ĺ		Ť	ì			
ArtNo.					C19A/89 S1	C19A/89 S2	C19A/89 S3	C19A/89 S
Technology	(i) Page 7.1				Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	1 Page 7.4					B/3,5		
Surface	(i) Page 7.5							
Tolerance	(i) Page 7.6				S1	S2	S3	S4
Material Groups	(i) Page 7.7					univers	sal use	
Ødı	P _{mm}	L1 L2 (2 🗆	Î				
M3	0,35	46 9 4	3,2	2,65				
M 3,5	0,35	48 13 4	3,2	3,15				
M 4	0,5	52 11 5	4	3,5				
M 4,5	0,5	55 13 5	4	4				
M 5	0,5	60 13 5	,5 4,5	4,5				
M 6	0,5	62 15 6	4,5	5,5				
M 6	0,75	62 15 6	4,5	5,25				
M 7	0,75	65 19 6	,2 5	6,25				
M 8	0,75	70 22 6	,2 5	7,2				
M 8	1	70 22 6	,2 5	7				
M 9	0,75	72 22 7	5,5	8,25				
M 9	1	72 22 7	5,5	8				
M 10	0,75	75 24 7	5,5	9,25				
M 10	1	75 24 7	5,5	9				
M 10	1,25	75 24 7	5,5	8,75				
M 11	0,75	80 25 8	6	10,25				
M 11	1	80 25 8	6	10				
M 12	1	82 29 8	,5 6,5	11				

ArtNo.			C19A/89 S1	C19A/89 S2	C19A/89 S3	C19A/89 S4
Technology	(i) Page 7.1		Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	1 Page 7.4			B/3,	5-5 x P	
Surface	(i) Page 7.5					
Tolerance	(i) Page 7.6		S1	S2	S3	S4
Material Groups	(i) Page 7.7			univer	sal use	
Ødı	Pmm	L1 L2 C12 🗆 🧂				
M 15	1	90 30 10,5 8 14				
M 15	1,5	90 30 10,5 8 13,5				
M 16	1	95 32 12,5 10 15				
M 16	1,5	95 32 12,5 10 14,5				
M 18	1	100 37 14 11 17				
M 18	1,5	100 37 14 11 16,5				
M 18	2	100 37 14 11 16				
M 20	1	105 37 15 12 19				
M 20	1,5	105 37 15 12 18,5				
M 20	2	105 37 15 12 18				
M 22	1	115 38 17 13 21,0				
M 22	1,5	115 38 17 13 20,5				
M 22	2	115 38 17 13 20				
M 24	1	120 45 19 15 23				
M 24	1,5	120 45 19 15 22,5				
M 24	2	120 45 19 15 22				
M 25	1,5	125 45 19 15 23,5				
M 25	2	125 45 19 15 23				
M 26	1	125 45 20 15 25				
M 26	1,5	125 45 20 15 24,5				
M 26	2	125 45 20 15 24				
M 27	1,5	130 45 20 15 25,5				
M 27	2	130 45 20 15 25				

	100		
Ødı	Pmm	L1 L2 C12 🗆 🧍	
M 28	1,5	130 45 21 17 26	6,5
M 28	2	130 45 21 17 26	
M 30	1	135 48 23 17 29	
M 30	1,5	135 48 23 17 28	3,5
M 30	2	135 48 23 17 28	В
M 30	3	135 48 23 17 27	
M 33	1,5	145 45 25 19 31	1,5
M 33	2	145 45 25 19 31	
M 33	3	145 51 25 19 30	
M 36	1,5	155 45 28 21 34	4,5
M 36	2	155 45 28 21 34	
M 36	3	155 57 28 21 33	

JIS
HSS-E/V3
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C19A for through holes

2xd

ArtNo.							C19A/2689 S1	C19A/2689 S2	C19A/2689 S3	C19A/2689 S4
Technology	(i) Page 7.1						Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	1 Page 7,4							B/3,	5-5 x P	
Surface	(i) Page 7.5						steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	(i) Page 7.6						S1	S2	S3	S4
Material Groups	(i) Page 7.7							univer	sal use	
Ødı	P _{mm}	Lı	L2	d ₂						
M3	0,35	46	9	4	3.2	2,65				

	0					different doc
Ød ₁	P _{mm}	Lı	L2 d2		Î	
M3	0,35	46 9	4	3,2	2,65	
M 3,5	0,35	48 1	3 4	3,2	3,15	
M 4	0,5	52 1	1 5	4	3,5	
M 4,5	0,5	55 1	3 5	4	4	
M 5	0,5	60 1	3 5,5	4,5	4,5	
M 6	0,5	62 1	5 6	4,5	5,5	
M 6	0,75	62 1	5 6	4,5	5,25	
M 7	0,75	65 1	9 6,2	5	6,25	
M 8	0,75	70 2	2 6,2	5	7,2	
M 8	1	70 2	2 6,2	5	7	
M 9	0,75	72 2	2 7	5,5	8,25	
M 9	1	72 2	2 7	5,5	8	
M 10	0,75	75 2	4 7	5,5	9,25	
M 10	1	75 2	4 7	5,5	9	
M 10	1,25	75 2	4 7	5,5	8,75	
M 11	0,75	80 2	5 8	6	10,25	
M 11	1	80 2	5 8	6	10	
M 12	1	82 2	9 8,5	6,5	11	
M 12	1,25	82 2	9 8,5	6,5	10,75	
M 12	1,5	82 2	9 8,5	6,5	10,5	
M 14	1	88 3	0 10,5	8	13	
M 14	1,25	88 3	0 10,5	8	12,75	
M 14	1,5	88 3	0 10,5	8	12,5	

JIS
HSS-E/V3
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C19A for through holes

2xd,

Material Groups	(i) Page 7.7	ê	0.00	univer	sal use	
Tolerance	1 Page 7.6		S1	S2	S3	S4
Surface	(i) Page 7.5	S	team oxided	steam oxided	steam oxided	steam oxided
Chamfer Length	1 Page 7.4			B/3,	5-5 x P	
Technology	1 Page 7.1		Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
ArtNo.		C1	19A/2689 S1	C19A/2689 S2	C19A/2689 S3	C19A/2689 S4

	0				different dec
Ød ₁	P _{mm}	L1 L2	d ₂ □	Î	
M 15	1	90 30	10,5 8	14	
M 15	1,5	90 30	10,5 8	13,5	
M 16	1	95 32	12,5 10	15	
M 16	1,5	95 32	12,5 10	14,5	
M 18	1	100 37	14 11	17	
M 18	1,5	100 37	14 11	16,5	
M 18	2	100 37	14 11	16	
M 20	1	105 37	15 12	19	
M 20	1,5	105 37	15 12	18,5	
M 20	2	105 37	15 12	18	
M 22	1	115 38	17 13	21,0	
M 22	1,5	115 38	17 13	20,5	
M 22	2	115 38	17 13	20	
M 24	1	120 45	19 15	23	
M 24	1,5	120 45	19 15	22,5	
M 24	2	120 45	19 15	22	
M 25	1,5	125 45	19 15	23,5	
M 25	2	125 45	19 15	23	
M 26	1	125 45	20 15	25	
M 26	1,5	125 45	20 15	24,5	
M 26	2	125 45	20 15	24	
M 27	1,5	130 45	20 15	25,5	
M 27	2	130 45	20 15	25	

30

JIS
HSS-E/V3
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C19A for through holes

ArtNo.		C19A/2689 S1	C19A/2689 S2	C19A/2689 S3	C19A/2689 S4
Technology	(i) Page 7.1	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	1 Page 7.4		B/3,5-5 x P		
Surface	Page 7.5	steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	1 Page 7.8	S1	S2	S3	S4
Material Groups	Page 7.7		univer	sal use	

Material Groups	(i) Page 7.7	universal use
Ødı	P _{mm}	Lı Lı dı 🗆 🧂
M 28	1,5	130 45 21 17 26,5
M 28	2	130 45 21 17 26
M 30	1	135 48 23 17 29
M 30	1,5	135 48 23 17 28,5
M 30	2	135 48 23 17 28
M 30	3	135 48 23 17 27
M 33	1,5	145 45 25 19 31,5
M 33	2	145 45 25 19 31
M 33	3	145 51 25 19 30
M 36	1,5	155 45 28 21 34,5
M 36	2	155 45 28 21 34
M 36	3	155 57 28 21 33

Technology	1 Page 7.1		Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4			C/2-	3 x P	
Surface	(i) Page 7.5					
Tolerance	(i) Page 7.6		S1	S2	S3	S4
Material Groups	(i) Page 7.7			univers	sal use	
Ødı	P _{tpi}	L1 L2 d2 🗆 🧂				
No. 1	64	36 9,5 3 2,5 1,5				
No. 2	56	42 9,5 3 2,5 1,8	•			
No. 3	48	44 9,5 3 2,5 2,1				
No. 4	40	44 9,5 3 2,5 2,3	•			
No. 5	40	46 9 4 3,2 2,5	•			
No. 6	32	52 11 5 4 3,3		•		•
No. 8	32	52 11 5 4 3,3		•		•
No. 10	24	60 13 5,5 4,5 4,2		•		
No. 12	24	60 13 5,5 4,5 4,2		•		
1/4"	20	62 15 6 4,5 5		•		
5/16"	18	70 22 6,1 5 6,6		•		
3/8"	16	75 24 7 5,5 8,0		•		
7/16"	14	80 25 8 6 9,4		•		
1/2"	13	85 29 9 7 10,8		•		
9/16"	12	90 30 10,5 8 12,2		•		
5/8"	11	95 32 12 9 13,6			•	
3/4"	10	105 37 14 11 16,5			•	
7/8"	9	115 38 17 13 19,5			•	
1"	8	125 45 20 15 22,25			•	
1 1/4"	7					
1 1/2"	6					

JIS HSS-E/V3 RH spiral flutes 40° for universal use Recommended using CNC machine Recommended using oily cutting fluid for steam oxide products

Group C33A for blind holes

ArtNo.			C33A/2689 S1	C33A/2689 S2	C33A/2689 S3	C33A/2689 S
Technology	Page 7.1		Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4			C/2	-3 x P	
Surface	(i) Page 7.5		steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	1 Page 7.6		S1	S2	S3	S4
Material Groups	(i) Page 7.7	110	,	univer	sal use	
Ødı	P _{tpi}	L1 L2 OL2 🗆 🧂				
No. 1	64	36 9,5 3 2,5 1,5				
No. 2	56	42 9,5 3 2,5 1,8				
No. 3	48	44 9,5 3 2,5 2,1				
No. 4	40	44 9,5 3 2,5 2,3	•			
No. 5	40	46 9 4 3,2 2,5				
No. 6	32	52 11 5 4 3,3		•		
No. 8	32	52 11 5 4 3,3		•		
No. 10	24	60 13 5,5 4,5 4,2				
No. 12	24	60 13 5,5 4,5 4,2				
1/4"	20	62 15 6 4,5 5		•		
5/16"	18	70 22 6,1 5 6,6		•		
3/8"	16	75 24 7 5,5 8,0		•		
7/16"	14	80 25 8 6 9,4				
1/2"	13	85 29 9 7 10,8		•		
9/16"	12	90 30 10,5 8 12,2				
5/8"	11	95 32 12 9 13,6				
3/4"	10	105 37 14 11 16,5				
7/8"	9	115 38 17 13 19,5				
1"	8	125 45 20 15 22,25				

ArtNo.			C19A/89 S1	C19A/89 S2	C19A/89 S3	C19A/89 S4
Technology	1 Page 7.1		Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	1 Page 7.4			B/3,	5-5 x P	
Surface	(i) Page 7.5					
Tolerance	(i) Page 7.6		S1	S2	S3	S4
Material Groups	(i) Page 7.7			univer	sal use	
Ødı	P _{tpi}	L1 L2 d2 🗆 🗍				
No. 1	64	36 9,5 3 2,5 1,5	•			
No. 2	56	42 9,5 3 2,5 1,8	•			
No. 3	48	44 9,5 3 2,5 2,1	•			
No. 4	40	44 9,5 3 2,5 2,3		•		
No. 5	40	46 9 4 3,2 2,5				
No. 6	32	52 11 5 4 3,3		•		
No. 8	32	52 11 5 4 3,3		•		
No. 10	24	60 13 5,5 4,5 4,2		•		
No. 12	24	60 13 5,5 4,5 4,2				
1/4"	20	62 15 6 4,5 5			•	
5/16"	18	70 22 6,1 5 6,6			•	
3/8"	16	75 24 7 5,5 8,0			•	
7/16"	14	80 25 8 6 9,4				
1/2"	13	85 29 9 7 10,8			•	
9/16"	12	90 30 10,5 8 12,2				
5/8"	11	95 32 12 9 13,6			•	
3/4"	10	105 37 14 11 16,5				
7/8"	9	115 38 17 13 19,5				
1"	8	125 45 20 15 22,25	5			

JIS
HSS-E/V3
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C19A for through holes

Ødı	P _{tpi}	L1 L2 d 2	Ê		53.0700320	COMMITTEE STATE OF THE STATE OF	
Material Groups	(i) Page 7.7				univer	sal use	
Tolerance	1 Page 7.8			S1	S2	S3	S4
Surface	(i) Page 7.5			steam oxided	steam oxided	steam oxided	steam oxided
Chamfer Length	1 Page 7.4				B/3,	5-5 x P	
Technology	(i) Page 7.1			Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
ArtNo.				C19A/2689 S1	C19A/2689 S2	C19A/2689 S3	C19A/2689 S4

Material Groups	Page 7.7	universal use	
Ød ₁	Ptpi	Lı Lı dı 🗆 🧯	
No. 1	64	36 9,5 3 2,5 1,5	
No. 2	56	42 9,5 3 2,5 1,8	
No. 3	48	44 9,5 3 2,5 2,1	
No. 4	40	44 9,5 3 2,5 2,3	
No. 5	40	46 9 4 3,2 2,5	
No. 6	32	52 11 5 4 3,3	
No. 8	32	52 11 5 4 3,3	
No. 10	24	60 13 5,5 4,5 4,2	
No. 12	24	60 13 5,5 4,5 4,2	
1/4"	20	62 15 6 4,5 5	
5/16"	18	70 22 6,1 5 6,6	
3/8"	16	75 24 7 5,5 8,0	
7/16"	14	80 25 8 6 9,4	
1/2"	13	85 29 9 7 10,8	
9/16"	12	90 30 10,5 8 12,2	
5/8"	11	95 32 12 9 13,6	
3/4"	10	105 37 14 11 16,5	
7/8"	9	115 38 17 13 19,5	
1"	8	125 45 20 15 22,25	

ArtNo.						C33A/89 S1	C33A/89 S2	C33A/89 S3	C33A/89 S4
Technology	1 Page 7.1					Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes
Chamfer Length	1 Page 7.4						C/2	-3 x P	
Surface	(i) Page 7.5								
Tolerance	(1) Page 7.8					S1	S2	S3	S4
Material Groups	(i) Page 7.7						univer	sal use	
Ød ₁	P _{tpi}	Lı	L2 d 2		Î				
No. 0	80	36	9,5 3	2,5	1,25	•			
No. 1	72	36	9,5 3	2,5	1,55				
No. 2	64	42	9,5 3	2,5	1,9				
No. 3	56	44	9,5 3	2,5	2,1				
No. 4	48	44	9,5 3	2,5	2,4				
No. 5	44	46	9 4	3,2	2,5				
No. 6	40	52	11 5	4	3,3				
No. 8	36	52	11 5	4	3,3				
No. 10	32	60	13 5,5	4,5	4,2		•		
No. 12	28	60	13 5,5	4,5	4,2				
1/4"	28	62	15 6	4,5	5		•		
5/16"	24	70	22 6,1	5	6,9		•		
3/8"	24	75	24 7	5,5	8,5		•		
7/16"	20	80	25 8	6	9,9		•		
1/2"	20	85	29 9	7	11,5		•		
9/16"	18	90	30 10,	5 8	12,9		•		
5/8"	18	95	32 12	9	14,5		•		
3/4"	16	105	37 14	11	17,5		•		
7/8"	14	115	38 17	13	20,4				
1"	12	125	45 20	15	23,25				

JIS
HSS-E/V3
RH spiral flutes 40°
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C33A for blind holes

Ødı	P _{tpi}	L1 L2 d 2 🗆	ĺ							
Material Groups	(i) Page 7.7				univer	sal use				
Tolerance	1 Page 7.6			S1	S2	S3	S4			
Surface	(i) Page 7.5			steam oxided	steam oxided	steam oxided	steam oxided			
Chamfer Length	1 Page 7.4		C / 2-3 x P							
Technology	1 Page 7.1			Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes	Black Ring spiral flutes			
ArtNo.				C33A/2689 S1	C33A/2689 S2	C33A/2689 S3	C33A/2689 S4			

Material Groups	1 Page 7.7	universal use
Ødı	P _{tpi}	Lı Lı dı 🗆 🧂
No. 0	80	36 9,5 3 2,5 1,25
No. 1	72	36 9,5 3 2,5 1,55
No. 2	64	42 9,5 3 2,5 1,9
No. 3	56	44 9,5 3 2,5 2,1
No. 4	48	44 9,5 3 2,5 2,4
No. 5	44	46 9 4 3,2 2,5
No. 6	40	52 11 5 4 3,3
No. 8	36	52 11 5 4 3,3
No. 10	32	60 13 5,5 4,5 4,2
No. 12	28	60 13 5,5 4,5 4,2
1/4"	28	62 15 6 4,5 5
5/16"	24	70 22 6,1 5 6,9
3/8"	24	75 24 7 5,5 8,5
7/16"	20	80 25 8 6 9,9
1/2"	20	85 29 9 7 11,5
9/16"	18	90 30 10,5 8 12,9
5/8"	18	95 32 12 9 14,5
3/4"	16	105 37 14 11 17,5
7/8"	14	115 38 17 13 20,4
1"	12	125 45 20 15 23,25

JIS HSS-E/V3 for universal use Recommended using CNC machine

Group C19A for through holes

ArtNo.		C19A/89 S1	C19A/89 S2	C19A/89 S3	C19A/89 S4
Technology	1 Page 7.1	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	Page 7.4		B/3,	5-5 x P	
Surface	Page 7.5				
Tolerance	Page 7.6	S1	S2	S3	S4
Material Groups	(1) Page 7.7		univer	sal use	

Iviateriai Grou	ips (1) Page 7.7	universal use	
Ødı	P _{tpi}	lı le de □ 🖁	
No. 0	80	36 9,5 3 2,5 1,25	
No. 1	72	36 9,5 3 2,5 1,55	
No. 2	64	42 9,5 3 2,5 1,9	
No. 3	56	44 9,5 3 2,5 2,1	
No. 4	48	44 9,5 3 2,5 2,4	
No. 5	44	46 9 4 3,2 2,5	
No. 6	40	52 11 5 4 3,3	
No. 8	36	52 11 5 4 3,3	
No. 10	32	60 13 5,5 4,5 4,2	
No. 12	28	60 13 5,5 4,5 4,2	
1/4"	28	62 15 6 4,5 5	
5/16"	24	70 22 6,1 5 6,9	
3/8"	24	75 24 7 5,5 8,5	
7/16"	20	80 25 8 6 9,9	
1/2"	20	85 29 9 7 11,5	
9/16"	18	90 30 10,5 8 12,9	
5/8"	18	95 32 12 9 14,5	
3/4"	16	105 37 14 11 17,5	
7/8"	14	115 38 17 13 20,4	
1"	12	125 45 20 15 23,25	

JIS
HSS-E/V3
for universal use
Recommended using CNC machine
Recommended using oily cutting fluid
for steam oxide products

Group C19A for through holes

2xd

ArtNo.						C19A/2689 S1	C19A/2689 S2	C19A/2689 S3	C19A/2689 S
Technology	(i) Page 7.1					Black Ring spiral point	Black Ring spiral point	Black Ring spiral point	Black Ring spiral point
Chamfer Length	1 Page 7.4						B/3,	,5-5 x P	
Surface	(i) Page 7.5					steam oxided	steam oxided	steam oxided	steam oxided
Tolerance	1 Page 7.6					S1	S2	S3	S4
Material Groups	1 Page 7.7	11.					unive	rsal use	
Ødı	P _{tpi}	Li	Ŀ	d₂ ⊏	1				
No. 0	80	36	9,5	3 2	2,5 1,2	5			
No. 1	72	36	9,5	3 2	2,5 1,5	5			
No. 2	64	42	9,5	3 2	2,5 1,9				
No. 3	56	44	9,5	3 2	2,5 2,1				
No. 4	48	44	9,5	3 2	2,5 2,4				
No. 5	44	46	9	4 3	3,2 2,5				
No. 6	40		11		3,3				
No. 8	36	52	11	5 4	3,3				
No. 10	32	60	13	5,5 4	,5 4,2		•		
No. 12	28	60		5,5 4					
1/4"	28	62	15	6 4	,5 5		•		
5/16"	24	70	22	6,1	6,9			•	
3/8"	24	75	24		5,5 8,5			•	
7/16"	20	80	25	8 6	-/-				
1/2"	20	85	29						
9/16"	18	90		10,5 8					
5/8"	18	95		12 9					
3/4"	16	105		14 1					
7/8"	14	115		17 1					
1"	12	125	45	20 1	5 23,2	5			

PF SL (previous symbol PF SP) Pipe Tap Spiral Fluted Taps

JIS HSS-E/V3 RH spiral flutes 30° for universal use Recommended using CNC machine

Group C30A for blind holes

ArtNo.			C30A/89		
Technology	1 Page 7.1		spiral flutes		
Chamfer Length	(i) Page 7.4		C / 2-3 x P		
Surface	(i) Page 7.5				
Tolerance	1 Page 7.6		JIS II		
Material Groups	1 Page 7.7		universal use		
Ødı	Pmm	L1 L2 d2 🗆 🧂			
PF 1/8"	28	55 19 8 6	•		
PF 1/4"	19	62 28 11 9	•		
PF 3/8"	19	65 28 14 11	•		
PF 1/2"	14	80 35 18 14	•		
PF 3/4"	14	85 35 23 17	•		
PF 1"	11	95 45 26 21	•		
		1			

Under development Pipe Tap Straight Taps

JIS HSS-E/V3 for universal use Recommended using CNC machine

Group COOA for blind and through holes

Art.-No.

Technology	(1) Page 7.1		straight flutes		
Chamfer Length	Page 7.4		C / 2-3 x P		
Surface	(i) Page 7.5				
Tolerance	(i) Page 7.6		JIS II		
Material Groups	(i) Page 7.7		universal use		
Ødı	Pmm	Lı Lı dı 🗆 🧂			
PF 1/8"	28	55 19 8 6			
PF 1/4"	19	62 28 11 9			
PF 3/8"	19	65 28 14 11			
PF 1/2"	14	80 35 18 14			
PF 3/4"	14	85 35 23 17			
PF 1"	11	95 45 26 21			
		1			

C00A/89

BSPT - British Standard Tapered Pipe Thread DIN EN 10226-2, ISO 7-1

PT SL (previous symbol PT SP) Pipe Tap Spiral Fluted Taps

JIS HSS-E/V3 RH spiral flutes 30° for universal use Recommended using CNC machine

Group C30A for blind holes

ArtNo.			C30A/89		
Technology	1 Page 7.1		spiral flutes		
Chamfer Length	1 Page 7.4		C / 2-3 x P		
Surface	(i) Page 7.5				
Tolerance	(i) Page 7.6		JIS II		
Material Groups	(i) Page 7.7		universal use		
Ødı	Pmm	L1 L2 d2 🗆 🧯			
PT 1/8"	28	55 19 8 6	•		
PT 1/4"	19	62 28 11 9	•		
PT 3/8"	19	65 28 14 11	•		
PT 1/2"	14	80 35 18 14	•		
PT 3/4"	14	85 35 23 17	•		
PT 1"	11	95 45 26 21	•		
		Į.			
		Ţ			
		1			

NPT SL (previous symbol NPT SP) Pipe Tap Spiral Fluted Taps

JIS HSS-E/V3 RH spiral flutes 30° for universal use Recommended using CNC machine

Group C30A for blind holes

2xd,

ArtNo.			C30A/89		
Technology	1 Page 7.1		spiral flutes		
Chamfer Length	1 Page 7.4		C / 2-3 x P		
Surface	(i) Page 7.5				
Tolerance	(1) Page 7.6		ANSIG		
Material Groups	(i) Page 7.7		universal use		
Ødı	Pmm	Lı Lz dz 🗆 🧂			
NPT 1/8"	27	55 19 8 6 8,4	•		
NPT 1/4"	18	62 28 11 9 11,1	•		
NPT 3/8"	18	65 28 14 11 14,3	•		
NPT 1/2"	14	80 35 18 14 17,9	•		
NPT 3/4"	14	85 35 23 17 23,0	•		
NPT 1"	11,5	95 45 26 21 29,0	•		
		J			

43

Under development Pipe Tap Straight Fluted Taps

JIS HSS-E/V3 for universal use Recommended using CNC machine

Group COOA for blind and through holes

Technology	
Surface	
Tolerance Material Groups 1 Page 7.7 1 L1 L2 d2 □ NPT 1/8" 28 55 19 62 28 11 NPT 3/8" 19 65 28 14 11 14,3 NPT 1/2" 14 80 35 18 14 17,9	
Material Groups ⑤ Page 7.7 universal use Ødı Pmm L1 L2 d2 □ NPT 1/8" 28 55 19 8 6 8,4 NPT 1/4" 19 62 28 11 9 11,1 NPT 3/8" 19 65 28 14 11 14,3 NPT 1/2" 14 80 35 18 14 17,9	
Ød1 Pmm L1 L2 d2 □ NPT 1/8" 28 55 19 8 6 8,4 NPT 1/4" 19 62 28 11 9 11,1 NPT 3/8" 19 65 28 14 11 14,3 NPT 1/2" 14 80 35 18 14 17,9	
NPT 1/8" 28 55 19 8 6 8,4 NPT 1/4" 19 62 28 11 9 11,1 NPT 3/8" 19 65 28 14 11 14,3 NPT 1/2" 14 80 35 18 14 17,9	
NPT 1/4" 19 62 28 11 9 11,1 NPT 3/8" 19 65 28 14 11 14,3 NPT 1/2" 14 80 35 18 14 17,9	
NPT 3/8" 19 65 28 14 11 14,3 NPT 1/2" 14 80 35 18 14 17,9	
NPT 1/2" 14 80 35 18 14 17,9	
NPT 3/4" 14 85 35 23 17 23,0	
NPT 1" 11,5 95 45 26 21 29,0	

Schumacher's Technological Disciplines

Our core competences in tool development are prerequisites for industry-specific solutions:

Solid Carbide product line with internal coolant and outlets in the flutes

Product line from various PM substrates for sophisticated applications

Product line with special hard material coatings and geometries developed for high speed cutting

Product line with highly competitive pricing for large series

Product line for hard machining with specialized tool design

Due to the carefully tailored tool design (basic substrate, geometry, hard material coating), the parameters for using the tool and the continuous fine-tuning of the framework conditions, Schumacher engineers ensure an optimum performance.

Color Ring Line

The color ring line comprises machine taps from five different product groups which meet the requirements of highly sophisticated industries such as automotive, aerospace or chemicals. By their color marking, the appropriate use of these taps is facilitated. Selected hard material coatings increase the range of employment.

Cutting Speeds

Definition of rotation and cutting speeds for threading tools.

The table below contains the calculated values of rotation and cutting speeds for threading tools between M 3 and M 42. In most cases these calculations will serve for workshop use in practice. If interim values should be required, these can be calculated by drawing upon the formulas listed below.

nominal diameter						round	per minute	[1/min]					
M 3	425	530	635	850	1060	1270	1590	2120	2330	2650	2965	3180	3390
M 4	319	398	480	635	795	955	1190	1590	1750	1990	2230	2390	2550
M 5	255	318	382	510	635	765	955	1270	1400	1590	1785	1910	2040
M 6	212	265	318	425	530	635	795	1060	1170	1325	1485	1590	1700
M 8	159	198	238	318	398	478	598	795	875	995	1115	1195	1275
M 10	127	159	191	255	318	382	478	636	700	795	892	955	1020
M 12	106	133	159	212	265	318	398	531	584	664	744	795	850
M 14	91	114	136	182	228	273	342	455	500	568	636	682	728
M 16	80	100	119	159	199	239	299	398	438	497	557	597	637
M 18	71	88	106	142	177	212	265	354	388	442	495	530	565
M 20	64	80	95	127	159	192	239	318	350	398	446	478	510
M 22	58	72	87	116	145	174	217	290	318	362	405	435	463
M 24	53	66	80	106	133	159	200	266	292	332	372	398	425
M 27	47	59	71	95	118	142	177	236	260	295	330	355	378
M 30	42	53	64	85	106	127	159	212	234	265	297	318	340
M 33	39	48	58	77	96	116	145	193	212	242	270	290	309
M 36	35	44	53	71	88	106	133	177	195	221	248	265	283
M 39	33	41	49	65	82	98	122	163	180	205	228	245	262
M 42	30	38	45	61	76	91	114	152	167	190	212	228	243
	4	5	6	8	10	12	15	20	22	25	28	30	32
						Cuttin	g speed v [r	m/min]					

legend:

v = Cutting speed [m/min]

d = Nominal tap diameter [m]

n = Tool spindle rotation [1/min]

 $\pi = 3,14$

$$v = d \times \pi \times n$$

$$n = \frac{v}{d \times \pi}$$

Chamfer Form

Form	Chamfer length I ₄ 1) [x pitch]	Chamfer angle 光 [°]	Main field of application:	
А	6 to 8	5°	short through holes	6-8 P
В	3,5 to 5	8°	through holes in mid and long chipping materials	3,5 - 5 P
С	2 to 3	15°	blind holes and through holes in short chipping materials	2-3P
D	3,5 to 5	8°	blind holes with long threat run-out and through holes	3,5 · 5 P
E	1,5 to 2	23°	blind holes with very short threat run-out	1.5 - 2 P

¹⁾ The number of pitches is a simple, practice-oriented criterion for defining the chamfer length of taps

Hard Material Coatings

Technologies for hard materials coatings of HSS- and solid carbide tools are increasingly important since they bring about advantages such as:

- an increase in tool life
- a reduction of set-up times and a substantial
- increase of working speeds

These factors justify the extra expenditures compared to tools without hard coatings.

TiN Coating

Allround coating designed to improve tool life and optimize cutting speed. With a surface hardness of 2600 HV0.05 and a frictional coefficient of 0.40 this coating can be applied in working temperatures of up to 450°C. The thickness of the layer ranges between 2 - 4 μm . LIN coatings have a internal compressive stress of approx. 3.1 GPa.

TiCN Coating

Improved tribological characteristics compared to TiN. Micro hardness at 3000 HV0.05; frictional coefficient reduced to 0.35 compared to steel. Temperature stability of TiCN layers (thickness of 2 - 4 μm) extends up to 350°C. Internal compressive stress is at 3.5 GPa.

TiAIN Coating

Optimized PVD layer system, for hard materials of up to 50 HRC. Enhanced range of employment due to temperature stability up to 800 °C and micro hardness of 3000 HV0,05. This layer system features an oxidizing protection layer which provides the tool with a 'renewal effect.' Internal compressive stress of 1.9 GPa. The coating system is applied with a layer thickness of 2-4 μm .

SG4 Coating

Special coating made of super hard coating layer and solid state lubrication layer. Sectors of use comprise dry cutting and minimum lubrification. Wide range of applications due to optimum friction results and reduced tendency of adhesion.

Tolerances

Schematic description of production tolerances applicable for metric internal thread — in addition please also find below the specific tolerance fields for tap production

Material Groups					
Material Groups	V _c Forming To	m/min.] aps = V _C +30-50% S-E IM	Description	DIN 17 007 Material-No.	Strength [N/mm ²]
	bright	coated			
1. Steel					
1a. General construction steel					
	10-15	15-25	St 33	1.0035	290
	10-15	15-25	St 37	1.0120	340-370
	10-15	15-25	St 50	1.0531	470-610
	10-15	15-25	St 60-2	1.0060	570-710
	10-15	15-25	St 70-2	1.0070	670-830
1a. Cementation steel					
	10-15	15-25	C 15	1.0401	600-800
	10-15	15-25	Ck 15	1.1141	500-800
	10-15	15-25	20 Mn Cr 5	1.7147	1000-1300
	2-5	5-10	17 Cr Ni Mo 6	1.6587	1050-1350
1a. Heat-treatable steel					
	10-15	15-25	C 45	1.0503	650-800
	10-15	15-25	C 60	1.0601	800-850
	2-5	5-10	46 Cr 2	1.7003	700-850
	2-5	5-10	25 Cr Mo 4	1.7218	800-950
1b. Tool steel	2-5	5-10	30 Cr Ni Mo 8	1.6580	1250-1450
Cold work steel	8-10	10-15	21 MnCr 5	1.2162	
Cold Work Steel	8-10	10-15	105 WCr 6	1.2419	
	8-10	10-15	X 45 Ni Cr Mg	1.2767	
Hot work steel	8-10	10-15	55 Ni Cr Mo V 6	1.2713	
HOL WORK SLOOP	8-10	10-15	X 40 Cr Mo V 51	1.2344	
1b. Nitriding steel		12.12			
v	3-5	5-8	31 Cr Mo 1 2	1.8515	1000-1200
	3-5	5-8	34 Cr Al Mo 5	1.8505	800-950
	3-5	5-8	34 Cr Al NI 7	1.0000	850-1050
1b. Free-cutting steel					
	10-15	15-25	9 S 20 K	1.0711	360
	10-15	15-25	9 S Mn Pb 28	1.0718	380
	10-15	15-25	35 S 20	1.0726	490-610
1b. Heat-resistant steel	0.5	F.0	V 10 C= C: 10	1.4711	
	3-5	5-8	X 10 Cr Si 13	1.4711	
	3-5	5-8	X 15 Cr Ni Si 20 12	1.4828	
1h Cost stool	3-5	5-8	X 20 Cr Mo V 21		
1b. Cast steel	10-15	15-25	GS 45	1.0443	440
	10-15	15-25	GS 60	1.0553	590
	10-15	15-25	GS 70	1.0554	685
	10-10	10-20	0070	1.0004	000

Material Groups					
iviatorial droups	V		Sold Mental		AVX 8-75
		[m/min.] $sps = V_C + 30-50\%$	Description	DIN 17 007	Strength [N/mn
				Material-No.	
	VI	SS-E HM			
	bright	coated			
2. Chemical resistant steel					
Ferrited steel					
	3-5	5-8	X 6 Cr 13	1.4000	400-600
	3-5	5-8	X 4 Cr Mo S 18	1.4105	450-650
Martensitic steel					
	3-5	5-8	X 30 Cr 13	1.4028	800-1000
	3-5	5-8	X 12 Cr Mo S 17	1.4104	600-840
Austenitic steel					
	3-5	5-8	X 5 Cr Ni 18,10	1.4301	500-700
	3-5	5-8	X 6 Ni Mo Ti 17, 12.2	1.4571	500-730
	3-5	5-8	X 2 Cr Ni Mo 18, 14.3	1.4435	490-690
Sulphurated					
	3-5	5-8	X 10 Cr Ni S 18,9	1.4305	
Cast steel					
	3-5	5-8	G-X 6 Cr Ni Mo 18,10	1.4408	440-640
	3-5	5-8	G-X 3 Cr Ni Mo N 17, 13.5	1.4439	490-690
3. Grey cast iron					
On Lawreller consists					
3a. Lamellar graphite	0.40 05.00	40.00	00.40	0.0040	00
	8-12 25-30	12-20	GG 10	0.6010	88
	8-12 25-30	12-20	GG 20	0.6020	195
	8-12 25-30	12-20	GG 30	0.6030	295
Oh Cahanaidal assahita	8-12 25-30	12-20	GG 40	0.6040	390
3b. Spheroidal graphite	F.0	0.40	CCC 40	0.7040	400
	5-8	8-12	GGG 40		400
	5-8	8-12	GGG 50	0.7045	500
2h Mallaghla goet iron (white)	5-8	8-12	GGG 60	0.7060	600
3b. Malleable cast iron (white)	10.15	15-20	CTM/40	0.0040	400
	10-15 10-15	15-20	GTW 40	0.8040	400
	10-15	15-20	GTW 45 GTW 55	0.8045 0.8055	450 550
3b. Malleable cast iron (black)	10-15	15-20	GIVV 55	0.0000	000
SD. IVIAIICADIC CAST ITUIT (DIACK)	10-15	15-20	GTS 35	0.8135	350
	10-15				
	10-15	15-20	GTS 45	0.8145	450

Material Groups					
	V _c [n	n/min.]	Description	DIN 17 007	Strength [N/mm
	V _C Forming Tay	os = V _C +30-50%		Material-No.	Jan
	HSS VH	S-E M			
	bright	coated			
4. Titanium					
Pure titanium					
	2-4	4-6	Ti	99.5	3.7024,1
	2-4	4-6	Ti	99.4	37.055
Titanium alloys					
	2-4	4-6	Ti Al 5 Sn 2	3.7114	840-990
	2-4	4-6	Ti Al 6 V 4	3.7165	910-1100
5. Nickel					
Pure nickel					
	2-4	4-6	Ni 99,6	2.4060	370-590
	2-4	4-6	Ni 99,2	2.4068	340-540
Nickel alloys	0.4	4.0	M	0.4000	
	2-4 2-4	4-6	Monet 400	2.4360	
	2-4	4-6 4-6	Hasteloy Inconel 600	2.4812	
	2-4	4-6	Nimonic 90	2.4816	
C. Conner	2-4	4-0	Millionic 90		
6. Copper					
Copper alloys					
	10-15	15-20	E-Cu	2.0060	300-400
	10-15	15-20	SE-Cu	2.0070	
Bronze					
	10-15	15-20	G Cu Pb 5 Sn (Hg 5)	2.1170	240
	10-15	15-20	Cu Sn 6 (Hg 7)	2.1030	400-550
	10-15	15-20	G Cu Sn 10 Zn (Hg 10)	2.1176	230
Brass				1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1000000
short chipping	20-25 30-50	25-35	Cu Zn 39 Pb 2 (MS 58)	2.0380	450-550
short chipping	20-25 30-50	25-35	Cu Zn 40 A 2	2.0550	550-640
long chipping	20-25 30-50	25-35	Cu Zn 30	2.0265	400-500
Special alloys		7250	Î w		
	2-4	4-6	Ampco 18		1000-1200
	2-4	4-6	Ampco 20		1300-1500

Material Groups					
lå.	V _c [r	n/min.]	Description	DIN 17 007	Strength [N/mm
	V _C Forming Ta	ps = V _C +30-50%	Bessingation	Material-No.	Subligat point
	HSS VH	S-E M		MICENSON (1977) - 100-150	
	bright	coated			
7. Aluminium / Magnesium					
Aluminium wrought alloys < 0,	5% Si				
	20-25	25-35	Al Mn 1	3.0515	150-200
	20-25	25-35	AI Mg 3	3.3535	200-300
	20-25	25-35	AI Mg Si Pb	3.0615	200-270
	20-25	25-35	Al Zn 4,5 Mg 1	3.4335	
Aluminium cast alloys					
	20-30	30-40	G-Al Si 10 Mg	3.2381	250-320
	20-30	30-40	G-Al Mg 3	3.3541	140-200
	20-30	30-40	G-Al Cu 4	3.1841	280-400
Magnesium alloys					
		15-20	AZ 91		
8. Plastics					
8a. Thermoplastics					
	00.00	30-40	Hestelen		
long chipping	20-30	30-40	Hostalen		300-400
long chipping	20-30	30-40	Makrolon		300-400
long chipping					300-400
long chipping	20-30	30-40	Makrolon		300-400
long chipping	20-30 20-30	30-40 30-40	Makrolon PS Polystyrol		
long chipping	20-30 20-30 20-30	30-40 30-40 30-40	Makrolon PS Polystyrol POM Polymethylen		240
long chipping 8b. Duroplastics	20-30 20-30 20-30 20-30	30-40 30-40 30-40 30-40	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid		240 400-550
	20-30 20-30 20-30 20-30	30-40 30-40 30-40 30-40	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid		240 400-550
8b. Duroplastics	20-30 20-30 20-30 20-30 20-30	30-40 30-40 30-40 30-40 30-40	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid PA Polyamid		240 400-550 230
8b. Duroplastics	20-30 20-30 20-30 20-30 20-30	30-40 30-40 30-40 30-40 30-40	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid PA Polyamid Bakelit		240 400-550 230 450-550
8b. Duroplastics	20-30 20-30 20-30 20-30 20-30 3-5 3-5	30-40 30-40 30-40 30-40 30-40 5-8 5-8	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid PA Polyamid Bakelit Pertinax		240 400-550 230 450-550 550-640
8b. Duroplastics	20-30 20-30 20-30 20-30 20-30 3-5 3-5 3-5	30-40 30-40 30-40 30-40 30-40 5-8 5-8 5-8	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid PA Polyamid Bakelit Pertinax Ferrozell		240 400-550 230 450-550 550-640
8b. Duroplastics short chipping 9. Hard Materials	20-30 20-30 20-30 20-30 20-30 3-5 3-5 3-5 3-5	30-40 30-40 30-40 30-40 30-40 5-8 5-8 5-8	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid PA Polyamid Bakelit Pertinax Ferrozell		240 400-550 230 450-550 550-640
8b. Duroplastics short chipping	20-30 20-30 20-30 20-30 20-30 3-5 3-5 3-5 3-5	30-40 30-40 30-40 30-40 5-8 5-8 5-8 5-8	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid PA Polyamid Bakelit Pertinax Ferrozell Resopal		240 400-550 230 450-550 550-640
8b. Duroplastics short chipping 9. Hard Materials	20-30 20-30 20-30 20-30 20-30 3-5 3-5 3-5 3-5	30-40 30-40 30-40 30-40 30-40 5-8 5-8 5-8	Makrolon PS Polystyrol POM Polymethylen PVC Polyvenylchlorid PA Polyamid Bakelit Pertinax Ferrozell		240 400-550 230 450-550 550-640

Schumacher Precision Tools GmbH Kueppelsteiner Str. 18-20 D-42857 Remscheid

www.schumachertool.com

DISTRIBUTED BY: